Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of Interactions between Phosphatidylcholine Biomembranes and Surfactants

Por um escritor misterioso

Descrição

Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of  Interactions between Phosphatidylcholine Biomembranes and Surfactants
PDF) Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of Interactions between Phosphatidylcholine Biomembranes and Surfactants
Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of  Interactions between Phosphatidylcholine Biomembranes and Surfactants
Recent advances in quartz crystal microbalance with dissipation monitoring: Phase transitions as descriptors for specific lipid membrane studies - ScienceDirect
Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of  Interactions between Phosphatidylcholine Biomembranes and Surfactants
Influence of Divalent Cations on Deformation and Rupture of Adsorbed Lipid Vesicles
Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of  Interactions between Phosphatidylcholine Biomembranes and Surfactants
Analytical techniques and methods for study of drug-lipid membrane interactions
Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of  Interactions between Phosphatidylcholine Biomembranes and Surfactants
PDF) Determination of the Main Phase Transition Temperature of Phospholipids by Nanoplasmonic Sensing
Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of  Interactions between Phosphatidylcholine Biomembranes and Surfactants
Spectrum of Membrane Morphological Responses to Antibacterial Fatty Acids and Related Surfactants
Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of  Interactions between Phosphatidylcholine Biomembranes and Surfactants
PDF) Nanoplasmonic Ruler for Measuring Separation Distance between Supported Lipid Bilayers and Oxide Surfaces
Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of  Interactions between Phosphatidylcholine Biomembranes and Surfactants
Immobilization of natural lipid biomembranes and their interactions with choline carboxylates. A nanoplasmonic sensing study - ScienceDirect
Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of  Interactions between Phosphatidylcholine Biomembranes and Surfactants
Molecules, Free Full-Text
Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of  Interactions between Phosphatidylcholine Biomembranes and Surfactants
PDF) Immobilization of natural lipid biomembranes and their interactions with choline carboxylates. A nanoplasmonic sensing study
Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of  Interactions between Phosphatidylcholine Biomembranes and Surfactants
Unraveling Interactions between Ionic Liquids and Phospholipid Vesicles Using Nanoplasmonic Sensing
Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of  Interactions between Phosphatidylcholine Biomembranes and Surfactants
Intact Vesicle Adsorption and Supported Biomembrane Formation from Vesicles in Solution: Influence of Surface Chemistry, Vesicle Size, Temperature, and Osmotic Pressure
de por adulto (o preço varia de acordo com o tamanho do grupo)